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The addition of noise has a regularizing effect on Hermitian matrices. This effect is
studied here for H = A + V , where A is the base matrix and V is sampled from the
GOE or the GUE random matrix ensembles. We bound the mean number of eigenvalues
of H in an interval, and present tail bounds for the distribution of the Frobenius and

operator norms of H−1 and for the distribution of the norm of H−1 applied to a fixed
vector. The bounds are uniform in A and exceed the actual suprema by no more than
multiplicative constants. The probability of multiple eigenvalues in an interval is also
estimated.
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1. Introduction

It is often the case that disorder has a regularizing effect on the spectrum of an
Hermitian matrix. Recall the Wegner estimate [31], which expresses the regularizing
effect of diagonal disorder, and which is central in the spectral analysis of random
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operators. The estimate was formulated for matrices of the form

A+ V diag, (1.1)

where A is Hermitian and V diag is diagonal with entries independently sampled
from a bounded probability density ρ on R. For such N × N matrices, one has
uniformly in A:

E
[
#{eigenvalues of (A+ V diag) in I}] ≤ ‖ρ‖∞N |I| for any interval I ⊂ R,

(1.2)

where ‖ρ‖∞ is the essential supremum of ρ, and |I| is the Lebesgue measure of I.
The following related estimate is also valid:

P
{|(A+ V diag)−1

j j | > t
} ≤ ‖ρ‖∞

t
for all j = 1, . . . , N . (1.3)

Presented here are somewhat analogous bounds for matrices of the form

H = Asym + V GOE or H = AHerm + V GUE, (1.4)

the first case concerning a real symmetric base matrix Asym perturbed by a random
matrix V GOE sampled from the Gaussian Orthogonal Ensemble, and the second
case concerning an Hermitian base matrix perturbed by a random matrix sampled
from the Gaussian Unitary Ensemble. The superscripts, which are displayed here
for clarity, will often be omitted.

The invertibility properties of H = A + V are quantified in several ways: (i)
tail bounds for the distribution of the norm of H−1ϕ when ϕ is a fixed vector, (ii)
corresponding bounds for the Frobenius and operator norms of H−1, (iii) a bound
on the expected number of eigenvalues of H in an interval. The bounds are uniform
in A and exceed the actual suprema by no more than multiplicative constants, as
can be seen by considering the case A = 0 (cf. Sec. 7).

To state the results precisely we first recall the definitions of the invariant ensem-
bles. These consist of Hermitian matrices of the form

V =
X +X∗
√

2N
, (1.5)

where X is an N × N matrix with independent standard real Gaussian entries in
case of GOE, or independent standard complex Gaussian entries in case of GUE,
and the asterisk indicates Hermitian conjugation. In both cases the probability
distribution of V is of density proportional to

exp
{
−βN

4
trV 2

}
with respect to the Lebesgue measure on matrices of the corresponding symmetry:
real symmetric (GOE, with β = 1) or complex Hermitian (GUE, with β = 2). The
distributions are invariant under conjugation by the corresponding class of unitary
matrices (cf. [1, 17, 23], where various aspects of the invariant Gaussian ensembles
are discussed).
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Throughout we write ‖ϕ‖ for the Euclidean norm of a vector ϕ, and for a
matrix R write ‖R‖F =

√
Tr RR∗ for the Frobenius (Hilbert–Schmidt) norm and

‖R‖op = maxϕ �=0 ‖Rϕ‖/‖ϕ‖ for the operator norm. The following pair of theorems
states our main results.

Theorem 1. If either: A is an N × N real symmetric matrix, ϕ ∈ RN , and V

is sampled from GOE, or: A is an N × N Hermitian matrix, ϕ ∈ CN , and V is
sampled from GUE, then the following bounds apply to the matrix H := A+V, with
a constant C <∞ which is uniform in N,A, and ϕ :

(1) (Fixed vector) for all t ≥ 1,

P{‖H−1ϕ‖ ≥ t
√
N‖ϕ‖} ≤ C

t
, (1.6)

(2) (Frobenius and operator norms) for all t ≥ 1,

P{‖H−1‖op ≥ tN} ≤ P{‖H−1‖F ≥ tN} ≤ C

t
, (1.7)

(3) (Mean density of states) for any interval I ⊂ R,

E [#{eigenvalues of H in I}] ≤ CN |I|. (1.8)

The key for the three statements listed in Theorem 1 is the single-vector tail
estimate (1.6). In our approach the two other bounds are concisely derived from it.
The main technical step in the proof of (1.6) is (2.7) of Lemma 2.1. Estimates of
similar nature (concentration bounds on quadratic forms) have also played a role in
the work of [15, 16, 29]. The lemma is proved below by a Fourier-analytic method.

Because of the similarity between (1.8) and (1.2) of [31], the former bound may
be referred to as a Wegner-type estimate (though the similarity of the bounds does
not extend to their derivations). For GUE perturbations of Hermitian matrices a
bound of the form (1.8) on the density of states, from which (1.7) can be deduced
for that case, was also recently proved by Pchelin [24], building on the work of [27].

For the next statement, we denote, for Borel sets B ⊂ R and Hermitian
matrices H :

N (B) = N (B;H) := number of eigenvalues of H in B.

Theorem 2. Let H = A+V be as in Theorem 1. Then there is a constant C <∞,

uniform in A and N, such that for every 1 ≤ k ≤ N and every interval I ⊂ R,

P{N (I) ≥ k} ≤ (C |I|N)k

k!
. (1.9)

Moreover, for any k-tuple of intervals I1, . . . , Ik ⊂ R,

E[N (I1)(N (I2) − 1)+ · · · (N (Ik) − k + 1)+] ≤
k∏

j=1

(C |Ij |N). (1.10)

Continuing the comparison with bounds which are known for operators with
random potential, the case k = 2 of (1.9) is reminiscent of the Minami bound for
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matrices A+ V diag with diagonal disorder, as in (1.1), for which it was established
in [18] that

P{(A+ V diag) has at least 2 eigenvalues in I} ≤ C(‖ρ‖∞ |I|N)2. (1.11)

This estimate was instrumental in Minami’s proof of Poisson local eigenvalue statis-
tics for random Schrödinger operators in Zd throughout the regime of Anderson
localization. Extensions to k > 2 were subsequently presented by Bellissard, His-
lop, and Stolz [2], Graf and Vaghi [10], and Combes, Germinet, and Klein [6]. In
particular, our derivation of Theorem 2 has benefitted from the strategy of [6].

Applications. The above bounds are useful for a number of problems in the the-
ory of random operators, particularly, pertaining to random band and Wegner-type
operators, some of which will be discussed in [25]. The estimate (1.6) plays a key
role in the proof of localization at strong disorder for the Wegner N -orbital model,
and some of its variants, with conjecturally sharp dependence of the localization
threshold on the number of orbitals. The bound (1.8) enables density of state esti-
mates for a class of models including the Wegner orbital model and Gaussian band
matrices. Theorem 2 is used to prove convergence of the local eigenvalue statistics
to the Poisson process in the regime of localization. In such applications the sharp
dependence of the above bounds on N and t is of value.

The bounds discussed here are of relevance also from other perspectives. Effects
on the spectrum of the addition of a symmetric random matrix have been studied
in light of applications in numerical analysis by Sankar, Spielman and Teng [26]
(for the case of Gaussian random matrices) and by Vershynin [29] and Farrell and
Vershynin [9] (for more general distributions). The addition of GOE/GUE and its
infinite volume limit was studied by Dyson [7] in the context of stochastic evolu-
tion, by Pastur [22] in the framework of the limiting eigenvalue distribution for
deformed Wigner ensembles. The regularization effect in the infinite volume limit
was considered in [3] in the language of free convolution of Voiculescu [30].

Relation with previous results. In presenting some of the related previous
results we shall invoke the notion of density of states, and the following notation.
For an N×N random matrix H , the normalized average ν(·;H) := N−1E[N (·;H)]
(or just ν) is referred to as the density of states (DOS) measure. When this measure
is absolutely continuous, i.e. of the form ν(dE) = ρ(E) dE , its Radon density ρ(E) is
called the density of states function. In this notation, the bound (1.8) asserts that
the DOS measure ν(·;H) of H = A + V is absolutely continuous, and its density
ρ(E ;H) is bounded by a constant independent of N and A.

While the results presented here focus on bounds which hold uniformly in the
base matrix A, related questions have been studied for sequences AN of determin-
istic Hermitian matrices of increasing size for which the density of state measures
νN converge weakly to a limiting measure ν∞(dE). Pastur [22] has shown that
in such situations the perturbed operators AN + V

GOE/GUE
N (and more generally
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AN + VWig
N , see below) have densities of states which converge weakly to a limit

which can be determined from ν∞, and which is absolutely continuous of density
satisfying ρ∞(E) ≤ π−1 (c.f. the monograph [23]).

There are also several results which rely on the Harish–Chandra formulæ
[11,4, 5], and thus apply to GUE but not GOE perturbation. For the case that
AN are uniformly norm-bounded and the perturbation is GUE it is a by-product
of the study of local eigenvalue statistics by Shcherbina [27,28] that the Pastur law
also holds in total variation distance. Thus one can conclude that

sup
‖AN‖≤K

sup
E
ρ(E ;AN + V GUE

N ) ≤ 1
π

+ o(1), N → ∞,

This bound is similar to the GUE case of (1.8), but it requires the deformation to
be bounded. For the case of possibly unbounded Hermitian matrix perturbed by
the GUE, Pchelin proved that

sup
N

sup
AN

sup
E
ρ(E ;AN + V GUE

N ) <∞,

i.e. our bound (1.8) on the mean density of states; his argument builds on [27].
The above question was considered also in the more general setting obtained

by replacing GOE/GUE by Wigner matrices VWig
N , for which the entries above the

main diagonal are iid though not necessarily Gaussian. Vershynin [29] showed that
in such case

sup
‖AN‖≤K

P

{
‖(AN + VWig

N )−1‖op ≥ tN
}
≤ CK

t1/9
+ 2 exp(−N cK ) (1.12)

with constants CK , ck > 0 depending only on K. Vershynin’s result holds under
very mild assumptions on the matrix entries; an inspection of the proof shows that
if the entries are themselves regular (for example, have density bounded by C

√
N),

the estimate holds without the term 2 exp(−N cK ). We also mention that Nguyen
[19] showed that for any K > 0 and b > 0 there exists a > 0 so that

sup
‖AN‖≤NK

P

{
‖(AN + VWig

N )−1‖op ≥ Na
}
≤ N−b. (1.13)

Upper bounds on the probability of two close eigenvalues were proved by Nguyen,
Tao and Vu [20].

Recently, universality of local eigenvalue statistics for deformed Wigner ensem-
bles was studied by O’Rourke and Vu [21], Knowles and Yin [13, Sec. 12] and Lee,
Schnelli, Stetler, and Yau [14].

Among the results pertaining to AN = 0, that is concerning the density of state
of the Wigner matrices without these being used as deformations of a base matrix,
we mention only a few most relevant to the current discussion.

One of the forms of the Wigner law asserts that if VN is sampled from a Wigner
ensemble of dimension N ×N then

ρ(E ;V Wig
N ) → 1

2π

√
(4 − E2)+, N → ∞ (1.14)
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in the weak sense [1, 23]. In the special cases of GOE and GUE, this may be
strengthened to uniform convergence [17], yielding

sup
E
ρ(E , V GOE/GUE

N ) ≤ 1
π

+ o(1), N → ∞. (1.15)

This implies a bound similar to (1.8) but for AN = 0.
Maltsev and Schlein [16] proved that the Wigner law (1.14) holds in the topology

of uniform convergence in [−2 + δ, 2 − δ] (for an arbitrary δ > 0) for a class of
Wigner matrices the entries of which obey certain regularity assumptions. Their
results imply that (1.15) with the restriction |E| < 2 − δ holds for this class of
Wigner matrices. The paper [16] builds on earlier work by Erdős, Schlein, and Yau
[8] and Maltsev and Schlein [15], where it was shown that there exists an absolute
constant C > 0 for which

P{‖(VWig
N − E)−1‖op ≥ tN} ≤ C

t
, t ≥ 1.

2. Fixed Vector Bound

In general terms, the Wegner bound concerns the inverse of a quantity which fluc-
tuates due to the presence of random terms in H . For the bound (1.3) it suffices to
focus on the fluctuations resulting from the randomness in the single term V diag

jj .
However, for the case considered here the contribution of any single diagonal term
is too small (by a factor of

√
N) for the claimed result. Instead, our proof of the

bound (1.6), for a given N × N matrix A, and a given vector ϕ, will focus on
the fluctuations in ‖H−1ϕ‖ due to the N random variables which determine V ϕ.
We start by reducing the claim to a technical estimate whose proof will be given
separately, in Sec. 6.

The real (GOE) case. As the distribution of V is invariant under orthogonal
conjugations, and we aim at results which hold uniformly in A, we may assume
without loss of generality that ϕ = e1, the first vector of the standard basis in R

N .
The matrix V has the form

V =
1√
N

(√
2g0 gt

g W

)
, (2.1)

where g0 ∈ R, g ∈ RN−1 and W is an (N − 1) × (N − 1) symmetric matrix, g0, g
and W are independent, and g0 is a standard real Gaussian and g is a standard real
Gaussian vector (i.e. with independent entries having the standard real Gaussian
distribution). Thus we may write

A+ V =
1√
N

(√
2g0 + a (g + b)t

g + b W +D

)
, (2.2)

for deterministic a ∈ R, b ∈ RN−1 and D an (N − 1) × (N − 1) symmetric matrix.
Set

Q := (W +D)−1.

1750028-6



March 22, 2017 10:15 WSPC/S0219-1997 152-CCM 1750028

Matrix regularizing effects of Gaussian perturbations

Inverting using the Schur–Banachiewicz formulæ, we obtain

1√
N

(A+ V )−1e1 =
1√

2g0 + a− (g + b)tQ(g + b)

(
1

−Q(g + b)

)
. (2.3)

Therefore

1√
N

‖(A+ V )−1e1‖ =

√
1 + ‖Q(g + b)‖2

|√2g0 + a− (g + b)tQ(g + b)|

≤ 1
|√2g0 + a− (g + b)tQ(g + b)|

+
‖Q(g + b)‖

|√2g0 + a− (g + b)tQ(g + b)| . (2.4)

For any deterministic d, and any t > 0,

P

{∣∣∣∣ 1√
2g0 + d

∣∣∣∣ ≥ t

}
≤ 1√

πt
,

therefore, first conditioning on g and Q, one may conclude that

P

{
1

|√2g0 + a− (g + b)tQ(g + b)| ≥
t

2

}
≤ 2√

πt
. (2.5)

Combining (2.4) with (2.5) one arrives at the key bound

P{‖(A+ V )−1e1‖ ≥ t
√
N} ≤ 2√

πt

+ P

{ ‖Q(g + b)‖
|√2g0 + a− (g + b)tQ(g + b)| ≥

t

2

}
. (2.6)

For the second term we have the following estimate, whose proof is deferred to
Sec. 6.

Lemma 2.1. Let Q be a (non-random) nonzero real symmetric matrix, and let g
be a standard real Gaussian vector of the same dimension. Then, for any real vector
b and any real number a,

P

{ ‖Q(g + b)‖
|(g + b)tQ(g + b) − a| ≥ t

}
≤ C

t
, t ≥ 1, (2.7)

for some absolute constant C.

The estimate (1.6) follows in the GOE case, by combining (2.6) with Lemma 2.1
(through conditioning on g0 and Q).

The complex (GUE) case. Here (2.2) is replaced by

A+ V =
1√
N

(
g0 + a (g + b)∗

g + b W +D

)
, (2.8)

where g0, a ∈ R, g, b ∈ CN−1 and W and D are (N − 1) × (N − 1) Hermitian
matrices, g0, g andW are independent, a, b andD are deterministic, g0 is a standard
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real Gaussian and g is a standard complex Gaussian vector (i.e. with independent
entries having independent real and imaginary parts, each of which has the normal
distribution with mean 0 and variance 1/2). Following the same steps as in the
GOE case one arrives at

1√
N

‖(A+ V )−1e1‖ =

√
1 + ‖Q(g + b)‖2

|g0 + a− (g + b)∗Q(g + b)|

≤ 1 + ‖Q(g + b)‖
|g0 + a− (g + b)∗Q(g + b)| , (2.9)

where Q := (W +D)−1.
To conclude the proof via the arguments used in the GOE case, we rewrite

the right-hand side of (2.9) in terms of a similar expression involving only real
quantities. For this purpose we consider C

N with the standard basis (ej)N
j=1 as a

vector space over R with the basis

(e1, ie1, e2, ie2, . . . , eN , ieN),

and denote by Q̃ the 2N×2N real symmetric matrix which represents multiplication
by Q in this basis. For a vector v ∈ CN , denote by ṽ ∈ R2N its image under this
identification. Then

‖Q(g + b)‖ = ‖Q̃(g̃ + b̃)‖ (2.10)

and, using that (g + b)∗Q(g + b) is real as Q is Hermitian, that

(g + b)∗Q(g + b) = (g̃ + b̃)tQ̃(g̃ + b̃). (2.11)

Thus
1 + ‖Q(g + b)‖

|g0 + a− (g + b)∗Q(g + b)| =
1 + ‖Q̃(g̃ + b̃)‖

|g0 + a− (g̃ + b̃)tQ̃(g̃ + b̃)| . (2.12)

Note that g̃ is a real Gaussian vector whose entries are independent with vari-
ance 1/2. In order to work with standard real Gaussian vectors we rewrite this
expression as

1 + ‖Q̃(g̃ + b̃)‖
|g0 + a− (g̃ + b̃)tQ̃(g̃ + b̃)| =

√
2(1 + ‖ Q̃√

2
(
√

2g̃ +
√

2b̃)‖)
|√2g0 +

√
2a− (

√
2g̃ +

√
2b̃)t Q̃√

2
(
√

2g̃ +
√

2b̃)|
,

(2.13)

where
√

2g̃ is standard Gaussian. Using (2.12) and (2.13) with (2.9) allows to finish
the proof in the GUE case with the same argument as in the GOE case.

Remark 2.2. Note that we actually proved the following stronger, conditional
version of (1.6): for ϕ = e1, the estimate (1.6) holds conditionally on the sub-
matrix obtained by deleting the first row and column of V . For a general ϕ, this
translates to the following estimate, which will be of use in the sequel:

P{‖H−1ϕ‖ ≥ t
√
N‖ϕ‖ | {u∗Hv |u, v ⊥ ϕ}} ≤ C

t
, (2.14)

with a constant C which is uniform in A, N and ϕ.

1750028-8



March 22, 2017 10:15 WSPC/S0219-1997 152-CCM 1750028

Matrix regularizing effects of Gaussian perturbations

3. Frobenius Norm Bound

To deduce the Frobenius norm estimate (1.7) from (1.6), we employ the following
principle. A similar strategy was employed by Sankar, Spielman, and Teng [26, Proof
of Theorem 3.3]

Lemma 3.1. Let Q be an N ×N real symmetric matrix and ϕ be a random vector
uniformly distributed on the sphere SN−1 = {ψ ∈ RN : ‖ψ‖ = 1}. Then

P

{
‖Qϕ‖ ≤ ε√

N
‖Q‖F

}
≤ 5ε, ε > 0.

Proof. By the Chebyshev inequality, for any real ξ,

P

{
‖Qϕ‖ ≤ ε√

N
‖Q‖F

}
≤ exp

(
ξε2

N
‖Q‖2

F

)
E exp(−ξ‖Qϕ‖2). (3.1)

A uniformly distributed vector on SN−1 can be generated by letting ϕ = g/‖g‖
with g a standard real Gaussian vector, for which g

‖g‖ and ‖g‖ are independent.
Thus,

E[exp(−ξ‖Qϕ‖2)] = E

[
exp

(−ξ‖Qg‖2

‖g‖2

)]

=
1

P{‖g‖2 ≤ 2N}E

[
exp

(−ξ‖Qg‖2

‖g‖2

)
�‖g‖2≤2N

]
≤ 2 E exp

[
− ξ

2N
‖Qg‖2

]
, (3.2)

where use was made of the bound P(‖g‖2 ≤ 2N) ≥ 1
2 which follows from E‖g‖2 = N .

Let {Ej} be the eigenvalues of Q, with which ‖Q‖2
F =

∑ E2
j . As the distribution

of g is invariant under orthogonal transformations, and the eigenvectors of Q form
an orthonormal basis, one gets (using a known Gaussian integral) for any ξ ≥ 0,

E exp
(
− ξ

2N
‖Qg‖2

)
= E exp

− ξ

2N

N∑
j=1

E2
j g

2
j


=

N∏
j=1

1√
1 + ξ

N E2
j

≤ 1√
1 + ξ

N ‖Q‖2
F

.

Juxtaposing the last inequality with (3.1) and (3.2), and substituting ξ =
N

2ε2‖Q‖2
F
(1 − 2ε2), yields

P

{
‖Qϕ‖ ≤ ε√

N
‖Q‖F

}
≤

2 exp
(

ξε2

N ‖Q‖2
F

)
√

1 + ξ
N ‖Q‖2

F

= 2
√

2ε exp
(

1 − 2ε2

2

)
≤ 5ε.
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We proceed to prove the Frobenius norm estimate (1.7) in the GOE case. Let
ϕ be a random vector distributed uniformly on the sphere S

N−1 and independent
of H , and let t ≥ 1. Applying Lemma 3.1 with Q = H−1 and ε = 1

10 , we get

P{‖H−1‖F ≥ tN} = E[�‖H−1‖F≥tN ]

≤ 2 E

[
�‖H−1‖F≥tNP

{
‖H−1ϕ‖ ≥ t

√
N

10

∣∣∣H}]

≤ 2 E

[
P

{
‖H−1ϕ‖ ≥ t

√
N

10

∣∣∣H}]
≤ 2P

{
‖H−1ϕ‖ ≥ t

√
N

10

}
.

(3.3)

Applying now the fixed vector bound (1.6) conditionally on ϕ to the probability in
the last term one gets

P{‖H−1‖F ≥ tN} ≤ 20C
t
, (3.4)

i.e. (1.7) holds in the real (GOE) case.
A similar argument may be used to establish (1.7) in the GUE case using the

following complex analog to Lemma 3.1. If Q is an N ×N Hermitian matrix and ϕ
is a random vector uniformly distributed on the complex sphere,

S
N−1
C

= {ψ ∈ C
N : ‖ψ‖ = 1}, (3.5)

then, for all ε > 0,

P

{
‖Qϕ‖ ≤ ε√

N
‖Q‖F

}
≤ 5ε. (3.6)

The inequality follows from Lemma 3.1 applied with 2N in place ofN by identifying
the space CN with R2N as in the proof of the GUE case of (1.6). This identification
multiplies the Frobenius norm by

√
2.

4. Bound on the Density of States

We now turn to the density of states bound (1.8).
Let H be the random matrix of Theorem 1. Observe that almost surely H

has only simple eigenvalues, e.g., as its distribution is absolutely continuous with
respect to that of the underlying invariant Gaussian ensemble (GOE or GUE) and
these are well known to have this property [17].

For a finite interval I, let {Ij,M} be a nested sequence of partitions of I into
subintervals whose maximal length tends to zero as M → ∞. Using the simplicity
of the spectrum, almost surely:∑

j

�{H has an eigenvalue in Ij,M ∩ I} ↗
M→∞

#{eigenvalues of H in I}. (4.1)
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Taking the expectation value and applying the monotone convergence theorem gives

E[#{eigenvalues of H in I}]

= lim
M→∞

∑
j

P{H has an eigenvalue in Ij,M ∩ I}. (4.2)

The probabilities on the right may be estimated through the norm bound (1.7),
which implies that for any interval J = [E − ε, E + ε]

P{H has an eigenvalue in J}

= P

{
‖(H − E)−1‖op ≥ 2

|J |
}

≤ CN |J |
2

. (4.3)

Upon summation this yields the claimed density of states bound (1.8).

5. Minami-Type Bound

The proof of Theorem 2 proceeds by induction on k, using an idea of Combes,
Germinet, and Klein [6]. The case k = 1 is exactly the Wegner-type estimate (1.8).
Thus we assume that (1.10) is valid for a certain k and prove that it is also valid
for k + 1.

In the proof we use the inequality (2.14), which we restate for convenience.
Letting H = A + V be as in Theorem 1, ϕ ∈ RN \ {0}, denote by Hϕ the matrix
obtained by restricting H to the subspace orthogonal to ϕ, i.e. the (N − 1) ×
(N − 1) matrix Hϕ = Pϕ⊥HP ∗

ϕ⊥ , where Pϕ⊥ is the orthogonal projection onto the
orthogonal complement of ϕ. Then (2.14) asserts that

P{‖H−1ϕ‖ ≥ t
√
N‖ϕ‖ |Hϕ} ≤ C

t
, (5.1)

with a constant C which is uniform in A, N and ϕ.
Let H be as in Theorem 1 and fix I1 to be a finite interval. Let ϕ be a random

vector, independent of H , which is uniformly distributed on the unit sphere S
N−1 in

the real case or uniformly distributed on the complex unit sphere S
N−1
C

(see (3.5))
in the complex case. Lemma 3.1 in the real case or its complex version (3.6) in the
complex case, imply that for every non-negative random variable X , measurable
with respect to H , and every E ∈ R one has

E[X ] ≤ 2E

[
X · P

{
‖(H − E)−1ϕ‖ ≥ ‖(H − E)−1‖F

10
√
N

∣∣∣∣∣H
}]

= 2E

[
X · �‖(H−E)−1ϕ‖≥ ‖(H−E)−1‖F

10
√

N

]
. (5.2)
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Now, let {Ij,M} be a nested sequence of partitions of I1 into subintervals whose
maximal length tends to zero as M → ∞. As in Sec. 4, the monotone convergence
theorem implies that

E[N (I1)(N (I2) − 1)+ · · · (N (Ik+1) − k)+]

= lim
M→∞

∑
j

E[�N (Ij,M∩I1)≥1 (N (I2) − 1)+ · · · (N (Ik+1) − k)+]. (5.3)

We focus on estimating a single summand in the last expression. Let J ⊆ I1 be an
interval with midpoint E . The event that N (J) ≥ 1 coincides with ‖(H−E)−1‖op ≥
2
|J| . Applying (5.2),

E[�N (J)≥1(N (I2) − 1)+ · · · (N (Ik+1) − k)+]

≤ 2E

[
�‖(H−E)−1‖op≥ 2

|J|
(N (I2) − 1)+

· · · (N (Ik+1) − k)+�‖(H−E)−1ϕ‖≥‖(H−E)−1‖F
10

√
N

]
≤ 2E[�‖(H−E)−1ϕ‖≥ 1

5|J|√N
(N (I2) − 1)+ · · · (N (Ik+1) − k)+]. (5.4)

Let Hϕ be as above, then the eigenvalues of Hϕ interlace those of H , therefore
N (Ij) − 1 ≤ N (Ij ;Hϕ). Thus,

E

[
�‖(H−E)−1ϕ‖≥ 1

5|J|√N
(N (I2) − 1)+ · · · (N (Ik+1) − k)+

]
≤ E

[
�‖(H−E)−1ϕ‖≥ 1

5|J|√N
N (I2;Hϕ) · · · (N (Ik+1;Hϕ) − k + 1)+

]
= E

[
N (I2;Hϕ) · · · (N (Ik+1 ;Hϕ) − k + 1)+

× P

{
‖(H − E)−1ϕ‖ ≥ 1

5|J |√N

∣∣∣∣∣ϕ,Hϕ

}]
≤ 5C|J |N · E[N (I2;Hϕ) · · · (N (Ik+1 ;Hϕ) − k + 1)+], (5.5)

where in the last inequality we have applied the estimate (5.1) to the matrix H−E .
By the invariance of the underlying Gaussian ensemble (GOE or GUE), the (N−1)-
dimensional matrix

H̃ϕ =

√
N

N − 1
Hϕ,
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conditioned on ϕ, has the form treated in Theorem 1. Thus the estimate (1.10),
applied using the induction hypothesis to H̃ϕ, shows that

E[N (I2;Hϕ) · · · (N (Ik+1;Hϕ) − k + 1)+] ≤
k+1∏
j=2

(C0|Ij |
√
N(N − 1))

≤
k+1∏
j=2

(C0|Ij |N). (5.6)

Putting together (5.4)–(5.6) shows that

E[�N (J)≥1(N (I2) − 1)+ · · · (N (Ik+1) − k)+] ≤ 10C|J |N ×
k+1∏
j=2

(C0|Ij |N).

Taking C0 ≥ 10C, the theorem follows by plugging the last estimate back into (5.3)
and performing the summation.

6. Ratio of Quadratic Forms

Let us recall from Sec. 2 that the above results hinge on the estimate stated in
Lemma 2.1. The statement to be proved is that for any (non-random) nonzero real
symmetric matrix Q, real vector b, real number a and t ≥ 1,

P

{ ‖Q(g + b)‖
|(g + b)tQ(g + b) − a| ≥ t

}
≤ C

t
, (6.1)

where g is a standard real Gaussian vector and C is an absolute constant.
That such a bound may hold may be surmised from the observation that

E‖Q(g + b)‖2 ≤ C Var[(g + b)tQ(g + b) − a]

(uniformly in Q, b, and a), which implies that the denominator of the ratio in (6.1)
fluctuates on a scale which is not smaller than the typical size of the numerator.
However, more careful analysis is needed to take into account the dependence of
the two terms and the possibility that the denominator has unbounded probability
density at small values.

We turn to the proof of Lemma 2.1, starting with two preliminary claims. The
first covers its rank one case.

Claim 6.1. If h is a standard Gaussian variable, a, b ∈ R, then

P

{ |h+ b|
|(h+ b)2 − a| ≥ t

}
≤

√
8
π

1
t
, t ≥ 1.

Proof. The event |h+b|
|(h+b)2−a| ≥ t coincides with

|h+ b|
t

≥ |(h+ b)2 − a|. (6.2)
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If a < 0, the probability of this event will only increase if we replace a with 0, thus
we suppose that a ≥ 0. Then

|(h+ b)2 − a| =
∣∣|h+ b| − √

a
∣∣ · ∣∣|h+ b| + √

a
∣∣ ≥ ∣∣|h+ b| − √

a
∣∣ · |h+ b|,

whence

P

{ |h+ b|
|(h+ b)2 − a| ≥ t

}
≤ P

{ |h+ b|
t

≥ ∣∣|h+ b| − √
a
∣∣ · |h+ b|

}
= P

{∣∣|h+ b| − √
a
∣∣ ≤ 1

t

}
≤ 4√

2π
1
t
.

The next claim will be used in deriving probability bounds on ratios through
estimates on the Fourier transform of the joint probability distribution of the numer-
ator and denominator (also known as the joint characteristic function).

Claim 6.2. Let X > 0, Y be a pair of random variables, and

χ(ξ, η) := E exp (i(ξX + ηY )). (6.3)

Then, for any ε > 0 and a ∈ R,

P

{ √
X

|Y − a| ≥ ε−1

}
≤ e1/4ε

4π
lim inf
δ→+0

∫
dη

∣∣∣∣∫ dξ
χ(ξ, η)

(η2ε2 + iξ + δ)
3
2 +δ

∣∣∣∣. (6.4)

Proof. The right-hand side of (6.4) does not change if we replace Y with Y − a,
therefore we can assume that a = 0. Set

h(x, y) = exp
(
− y2

4ε2x

)
�x>0, hδ(x, y) = h(x, y) exp(−δx)xδ,

and note that

h(x, y) ≥ e−
1
4�√

x
|y| ≥ε−1�x>0.

Therefore by the Chebyshev inequality and the Fatou lemma,

P

{√
X

|Y | ≥ ε−1

}
≤ e

1
4 Eh(X,Y ) ≤ e

1
4 lim inf

δ→+0
Ehδ(X,Y ).

The function hδ is continuous and integrable, and its Fourier transform ĥδ is also
integrable, as follows from the explicit computation below. Therefore, by a version
of the Plancherel theorem for the Fourier–Stieltjes transform [12, § VI.2],

Ehδ(X,Y ) =
(

1
2π

)2 ∫∫
dξdη ĥδ(ξ, η)χ(ξ, η),
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where

ĥδ(ξ, η) =
∫∫

hδ(x, y) exp(−i(ξx+ ηy))dxdy.

To compute ĥδ we first fix x > 0 and integrate over y (using a standard Gaussian
integral)∫ ∞

−∞
h(x, y) exp(−iηy)dy =

∫ ∞

−∞
exp

[
− y2

4ε2x
− iηy

]
dy = 2

√
πx ε exp(−η2ε2x).

Multiplying by e−δxxδ and integrating over x,

ĥδ(ξ, η) = 2
√
πε

∫ ∞

0

x
1
2+δ exp(−x(η2ε2 + iξ + δ))dx =

2
√
πΓ(3

2 + δ)ε

(η2ε2 + iξ + δ)
3
2+δ

.

This implies(
1
2π

)2 ∫∫
dξdη ĥδ(ξ, η)χ(ξ, η) =

Γ(3
2 + δ)ε
2π3/2

∫∫
dξdη (η2ε2 + iξ + δ)−

3
2−δ χ(ξ, η).

Applying the Fubini theorem and taking absolute value, we finally obtain:

P

{√
X

|Y | ≥ ε−1

}
≤ e

1
4 ε

4π
lim inf
δ→+0

∫
dη

∣∣∣∣∫ dξ
χ(ξ, η)

(η2ε2 + iξ + δ)
3
2 +δ

∣∣∣∣ .
Proof of Lemma 2.1. Using the symmetry which is built into the assumptions,
it suffices to establish the bound for diagonal matrices Q = diag(E1, E2, . . . , ). Our
goal is to prove that

P


√∑

j≥1 E2
j (gj + bj)2

|∑j≥1 Ej(gj + bj)2 − a| ≥ t

 ≤ C

t
, t ≥ 1, (6.5)

where the sums may be restricted to Ej 
= 0 (and the probability average is over
the independent standard Gaussian variables gj).

We reorder the eigenvalues (Ej) so that

E2
1 (1 + b21) ≥ E2

2 (1 + b22) ≥ E2
3 (1 + b23) ≥ · · · .

Denote

r :=



0, E2
1 (1 + b21) ≤

1
10

∑
j>1

E2
j (1 + b2j),

1, E2
1 (1 + b21) >

1
10

∑
j>1

E2
j (1 + b2j), E2

2 (1 + b22) ≤
1
10

∑
j>2

E2
j (1 + b2j),

2, otherwise

(6.6)

and

X :=
∑
j>r

E2
j (gj + bj)2, Y :=

∑
j≥1

Ej(gj + bj)2, χ(ξ, η) := E exp(i(ξX + ηY )),

(6.7)
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where, according to the number of nonzero eigenvalues, X is either identically zero
or almost surely positive. Observe that√∑

j≥1

E2
j (gj + bj)2 ≤

r∑
j=1

|Ej ||gj + bj | +
√
X. (6.8)

For the terms in the first sum in the right-hand side of (6.8), Claim 6.1 yields

P

{ |Ej ||gj + bj |
|Y − a| ≥ t

}
≤

√
8
π

1
t
, t ≥ 1. (6.9)

Thus, to prove (6.5) it suffices to show that

P

{ √
X

|Y − a| ≥ t

}
≤ C

t
, t ≥ 1. (6.10)

If X is identically zero the inequality is trivial. Thus we assume that X is not
identically zero and note that this assumption entails that E1, E2, E3 
= 0. We now
use Claim 6.2 which reduces the task of proving (6.10) to showing that

lim inf
δ′→+0

∫
dη

∣∣∣∣∫ dξ
χ(ξ, η)

(η2ε2 + iξ + δ′)
3
2 +δ′

∣∣∣∣ ≤ C. (6.11)

Noting that a standard Gaussian random variable h satisfies

E exp(iα(h+ β)2) =
1√

1 − 2iα
exp

(
iα

1 − 2iα
β2

)
, (6.12)

we have

χ(ξ, η) = E

exp

i
 r∑

j=1

ηEj(gj + bj)2 +
∑
j>r

(ξE2
j + ηEj)(gj + bj)2


=

r∏
j=1

1√
1 − 2iηEj

exp
(
b2j

iηEj

1 − 2iηEj

)

×
∏
j>r

1√
1 − 2i(ξE2

j + ηEj)
exp

(
b2j

i(ξE2
j + ηEj)

1 − 2i(ξE2
j + ηEj)

)
. (6.13)

For real η, the function χ(·, η) has an analytic continuation to the domain{
ξ − iδ | ξ ∈ R, δ <

1
2 maxj>r E2

j

}
; (6.14)

this continuation is given by

χ(ξ − iδ, η) =
r∏

j=1

1√
1 − 2iηEj

exp
(
b2j

iηEj

1 − 2iηEj

)

×
∏
j>r

1√
(1 − 2δE2

j ) − 2iζj
exp

(
b2j

δE2
j + iζj

(1 − 2δE2
j ) − 2iζj

)
, (6.15)
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where we set

ζj := ξE2
j + ηEj . (6.16)

Due to the assumption that there are at least three nonzero eigenvalues, we have:∫∫
dξdη

|χ(ξ − iδ, η)|
(ξ2 + δ2)

3
4

<∞ for 0 < δ <
1

2 maxj>r E2
j

.

Thus we may change the contour of integration and apply the dominated conver-
gence theorem to obtain that

lim inf
δ′→+0

∫
dη

∣∣∣∣∫ dξ
χ(ξ, η)

(η2ε2 + iξ + δ′)
3
2+δ′

∣∣∣∣ ≤ ∫
dη

∫
dξ

|χ(ξ − iδ, η)|
(ξ2 + δ2)

3
4
. (6.17)

We proceed to prove (6.11) by bounding the right-hand side of (6.17) for a
suitable δ. Let

ν2 :=
∑
j>r

E2
j (1 + b2j) and δ :=

1
10ν2

, (6.18)

and observe that

δ ≤ 1
10 max

j>r
E2

j

.

Then from (6.15)

|χ(ξ − iδ, η)| =
r∏

j=1

1
(1 + 4η2E2

j )
1
4

exp

(
−2b2j

η2E2
j

1 + 4η2E2
j

)

×
∏
j>r

1
((1 − 2δE2

j )2 + 4ζ2
j )

1
4

exp

(
b2j
δE2

j (1 − 2δE2
j ) − 2ζ2

j

(1 − 2δE2
j )2 + 4ζ2

j

)
.

Note that, for our choice (6.18) of ν and δ,

1
((1 − 2δE2

j )2 + 4ζ2
j )

≤ 1
(1 − 2δE2

j )2(1 + 4ζ2
j )

≤ exp{10δE2
j }

1 + 4ζ2
j

and

exp

(
b2j

δE2
j (1 − 2δE2

j )
(1 − 2δE2

j )2 + 4ζ2
j

)
≤ exp

(
δb2jE2

j

1 − 2δE2
j

)
≤ exp(10δb2jE2

j );

consequently,

|χ(ξ − iδ, η)| ≤ e

r∏
j=1

1
(1 + 4η2E2

j )
1
4

exp

(
− 2η2b2jE2

j

1 + 4η2E2
j

)

×
∏
j>r

1
(1 + 4ζ2

j )
1
4

exp

(
− 2b2jζ

2
j

1 + 4ζ2
j

)
.
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Combining this bound with Hölder’s inequality yields∫
dξ

∫
dη

|χ(ξ − iδ, η)|
(ξ2 + δ2)

3
4

≤ e

r∏
j=1

(∫∫
dξ

(ξ2 + δ2)
3
4

dη

(1 + 4η2E2
j )

3
4

exp

(
− 6η2b2jE2

j

1 + 4η2E2
j

)) 1
3

×
∫∫

dξdη

(ξ2 + δ2)
3
4

∏
j>r

1

(1 + 4ζ2
j )

3
4(3−r)

exp

[
− 6b2j

3 − r

ζ2
j

1 + 4ζ2
j

]
3−r
3

=: e
r∏

j=1

(Ij)
1
3 × (I ′)

3−r
3 . (6.19)

The first r integrals satisfy

Ij =
1
|Ej |

1√
δ

∫
dξ

(1 + ξ2)
3
4

∫
dη

(1 + 4η2)
3
4

exp

(
− 6b2jη

2

1 + 4η2

)

=
C1

|Ej |(1 + |bj |)
√
δ
≤ C2, (6.20)

for absolute constants C1, C2, where the last inequality uses the choice (6.6) of r
and the definition (6.18) of ν and δ.

It remains to estimate I ′. An additional application of Hölder’s inequality with
exponents

αj =
E2

j (1 + b2j)
ν2

shows that

I ′ ≤
∏
j>r

(∫∫
dξdη

(ξ2 + δ2)
3
4
(1 + 4ζ2

j )
− 3

4(3−r)αj exp

[
− ζ2

j

1 + 4ζ2
j

· 2b2j
αj

])αj

=:
∏
j>r

(Ij)αj . (6.21)

We proceed to show that each of the Ij is bounded by an absolute constant. Recall-
ing the definition (6.16) of ζj and changing variables,

Ij =
1

|Ej |
√
δ

∫
dξ

(1 + ξ2)
3
4

∫
dζj

(1 + 4ζ2
j )

3
4(3−r)αj

exp

[
− ζ2

j

1 + 4ζ2
j

· 2b2j
αj

]

=
C3

|Ej |
√
δ

∫
dζj

(1 + 4ζ2
j )

3
4(3−r)αj

exp

[
− ζ2

j

1 + 4ζ2
j

· 2b2j
αj

]
(6.22)
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for an absolute constant C3 > 0. By the choice (6.6) of r and (6.18) of ν and δ,

3
4(3 − r)αj

=
3ν2

4(3 − r)E2
j (1 + b2j)

≥ 3
4

for all j > r,

whence, splitting the domain of integration into |ζj | < 1 and |ζj | ≥ 1,∫
dζj

(1 + 4ζ2
j )

3
4(3−r)αj

exp

[
− ζ2

j

1 + 4ζ2
j

· 2b2j
αj

]
≤ C4

√
αj

max(1, |bj|) ≤ C5|Ej |
ν

for absolute constants C4, C5 > 0. Plugging the result into (6.22) and then into
(6.21) shows that I ′ is bounded by an absolute constant. Combining with the bounds
(6.20) and plugging into (6.19) and (6.17), we conclude that (6.11) holds, and
therefore so does Lemma 2.1.

7. Discussion

Sharpness of the estimates. The key step in our discussion of the invertibil-
ity properties of A + V , for a fixed Hermitian, real or complex, matrix A, and a
random perturbation V sampled from a corresponding Gaussian random matrix
ensemble, was the fixed vector bound (1.6). It may be of interest to note that up
to multiplicative constant (1.6) is saturated in two very different situations:

(1) A = 0 (or slightly more generally A = E �, with |E| < 2). In this case, ‖H−1ϕ‖
is typically of the order of the contribution of the closest eigenfunction, and for
that, typically:

dist(0, spec(H)) � 1
N

and |(ϕ,Ψ1)| � 1√
N
, (7.1)

where Ψ1 is the eigenfunction of eigenvalue closest to E .
(2) A = N1/2+ε P⊥

ϕ , with Pϕ the orthogonal projection on the space spanned by
ϕ and P⊥

ϕ its orthogonal complement. Perturbation theory allows to conclude
that in this case, typically:

dist(0, spec(H)) � 1√
N

and |(ϕ,Ψ1)| � 1. (7.2)

In both cases ‖H−1ϕ‖ is (typically) of the order of the most singular contribution,
which is |(ϕ,Ψ1)| dist−1(0, specH), and hence

‖H−1ϕ‖ �
√
N (7.3)

up to a random factor whose distribution has 1/t tails. However the composition
of this bound is quite different in the above two cases.

Note that, while in the above two cases ‖H−1ϕ‖ is of the same order, the same
cannot be said for the density of states at energy 0: it scales as N in the first case
(i.e. up to a constant as (1.8)), but only as

√
N in the second case.
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The Minami-type bound (1.9) is not expected to be sharp since one expects the
eigenvalue repulsion to result in a higher power on the right-hand side of (1.9) when
k ≥ 2 (namely, k2 in the GUE case and k(k + 1)/2 in the GOE case).

Weak disorder limit. To probe the effects of weak disorder one may consider
operators of the form:

Hλ,N = AN + λV GOE,GUE
N . (7.4)

with λ ≥ 0 a parameter which allows to tune the strength of the disorder. The
bounds derived here share the property of the random-potential Wegner estimate,
that at weak disorder the constants degrade at the rate λ−1.

Question. Can the density of states bound for Hλ,N be improved in case the base
operator H0,N = AN is itself asymptotically of a bounded density of states?

(The question is open and of interest also in the original Wegner case.)

Wigner matrices. It is natural to consider extensions of the bounds in Theorem 1
to deformed Wigner matrices, about which much has recently been learned [13,14].
The bounds cannot hold for any distribution of the entries: in case V is a Wigner
matrix with Bernoulli entries (uniformly sampled from { −1√

N
, 1√

N
}) and

√
NA =

e1e
∗
1 +M

∑N
j=2 eje

∗
j

‖(A+ V )−1‖op → ∞ as M → ∞, on the event that V11 = − 1√
N
.

In particular, for the supremum over N ×N real symmetric matrices we have:

sup
A

P(‖(A+ V )−1‖op ≥ t) ≥ 1
2

for any t,

in contrast to (1.7). Still, it seems reasonable to expect that bounds analogous to
those presented in Theorem 1 should hold when the entries of the Wigner matrix
are sufficiently regular, e.g., with probability densities bounded by

√
N .
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